А/А тестирование – это тест двух одинаковых страниц, с целью обнаружения отсутствия различий. Своего рода, это генеральная репетиция перед A/B тестом. При показе одного и того же варианта лендинга 2 контрольным группам пользователей в течение определенного периода времени вы должны получить примерно одинаковые значения конверсии от каждой группы. Благодаря чему можно определить соотношение полезных и бесполезных данных в общем массиве получаемой информации.
Представим, что вы тестируете заголовок на своей странице. Когда достоверность теста достигает 99%, вы делаете выводы и применяете победивший вариант на практике. Но позже, наблюдаете, что новый заголовок не приносит ожидаемого эффекта. Что на самом деле странно, потому что тест показал его в качестве победителя. И на практике, такое встречается чаще чем вы думаете и происходит обычно по следующим причинам:
Только 20% экспериментов дают достоверные результаты. Поэтому маркетологи нередко прибегают к А/А тесту как к некой «визитной карточке» хорошего специалиста по оптимизации и запускают его перед A/B тестом, в качестве подготовительного этапа.
Исходя из вышесказанного можно предположить, что А/А и А/В тесты дополняют друг друга.
Основные проблемы А/А тестирования
Одной из таких проблем считается затрата реальных ресурсов и времени на проведение А/А тестов, которые напрямую никак не способствуют ни оптимизации конверсии, ни росту доходов.
Другая проблема заключается в том, что процентов 70-80% тестов в какой-то момент времени достигнут порога статистической значимости и тестовая система констатирует, что с высокой степенью достоверности исходный вариант лендинга лучше, чем исходный вариант лендинга, потому как используется определенная величина тестовой выборки и тест подойдет к логическому завершению.
А если вы используете маленькую выборку, вы можете прийти к ложному умозаключению, что у вас что-то не в порядке — не хватает трафика или плохие инструменты аналитики, хотя дело может быть совсем не в этом.
Поэтому некоторые маркетологи, вместо А/А тестирования, считают более разумным предпринять следующие шаги:
A/B/A тестирование, как альтернативный вариант
A/A = сравнивают 2 одинаковые страницы.
A/A/B = A/A тест + одна дополнительная вариация.
Этот метод позволяет выявить проблемы маркетингового инструментария (как обычный A/A тест) при меньших затратах времени. После такого теста вы точно поймете, стоит ли доверять инструменту тестирования.
Триангуляция данных
Конкретнее мы говорим про использование нескольких исследовательских методов, как способ получения более достоверных данных, чем при использовании одного инструмента.
Проще говоря, маркетолог в ходе сплит-теста должен располагать по меньшей мере 2 пакетами инструментов метрики и анализа.
Это позволит иметь 2 выборки данных для сверки результатов, полученных от разных источников, между собой. Если вы заметите резкую диспропорцию, то сможете устранить ее источник перед началом собственно сплит-теста. К тому же наличие 2 пакетов инструментов метрики упрощает оперативную проверку данных, получаемых в ходе сплит-теста.
Так делать А/А или нет?
Имейте в виду, что проведение А/А теста требует немалых затрат времени и бюджета. Это действие занимает время, которое, как правило, используется для полноценного сплит-теста. Если у вас большой трафик, вы можете применить А/А тесты, но при малых объемах можно отказаться от данного тестирования. Также, когда вы проводите A/A-тестирование, то сравниваете конверсионную производительность двух идентичных целевых страниц. Размер выборки и количество данных, которые потребуются для того, чтобы убедиться в отсутствии значимого искажения результатов, будут огромными по сравнению с A/B-тестом.
Поэтому проводить сплит-тесты с очень похожими целевыми страницами, для обнаружения предельно мелких преимуществ одного варианта над другим, можеть быть не совсем целесообразно. Вы можете проводить A/A тест на несколько недель дольше, чем непосредственно сам A/B тест, и не получить никакой ценной информации. Но если нужно проверить сам софт для тестирования и бюджет позволяет, то перед запуском сплит-теста разумнее будет начать с А/А.
Такие дела, котаны. Теперь вы знаете о тестировании немного больше. Всем конверта!
Представим, что вы тестируете заголовок на своей странице. Когда достоверность теста достигает 99%, вы делаете выводы и применяете победивший вариант на практике. Но позже, наблюдаете, что новый заголовок не приносит ожидаемого эффекта. Что на самом деле странно, потому что тест показал его в качестве победителя. И на практике, такое встречается чаще чем вы думаете и происходит обычно по следующим причинам:
- Неверные показатели. Всего одна ошибка может исказить данные A/B тестирования. Интегрируйте сервисы аналитики для сверки данных.
- Неверное отображение посадочной страницы. Убедитесь, что лендинги выглядят корректно на всех устройствах и браузерах, а также не тормозят при загрузке.
- Преждевременное завершение теста. Иногда софт объявляет «победителя» слишком рано – при недостаточном размере или репрезентативности выборки. Помните: если вы достигли статистической значимости, это не значит, что пора прекращать тест. Чем он дольше, тем точнее результаты.
Только 20% экспериментов дают достоверные результаты. Поэтому маркетологи нередко прибегают к А/А тесту как к некой «визитной карточке» хорошего специалиста по оптимизации и запускают его перед A/B тестом, в качестве подготовительного этапа.
Исходя из вышесказанного можно предположить, что А/А и А/В тесты дополняют друг друга.
Основные проблемы А/А тестирования
Одной из таких проблем считается затрата реальных ресурсов и времени на проведение А/А тестов, которые напрямую никак не способствуют ни оптимизации конверсии, ни росту доходов.
Другая проблема заключается в том, что процентов 70-80% тестов в какой-то момент времени достигнут порога статистической значимости и тестовая система констатирует, что с высокой степенью достоверности исходный вариант лендинга лучше, чем исходный вариант лендинга, потому как используется определенная величина тестовой выборки и тест подойдет к логическому завершению.
А если вы используете маленькую выборку, вы можете прийти к ложному умозаключению, что у вас что-то не в порядке — не хватает трафика или плохие инструменты аналитики, хотя дело может быть совсем не в этом.
Поэтому некоторые маркетологи, вместо А/А тестирования, считают более разумным предпринять следующие шаги:
- кроссбраузерное тестирование лендинга
- тестирование на различных типах устройств
- показ посадочной страницы своим знакомым
- интеграция инструментов аналитики в процесс теста
- подробное пошаговое рассмотрение гипотезы и плана тестирования
A/B/A тестирование, как альтернативный вариант
A/A = сравнивают 2 одинаковые страницы.
A/A/B = A/A тест + одна дополнительная вариация.
Этот метод позволяет выявить проблемы маркетингового инструментария (как обычный A/A тест) при меньших затратах времени. После такого теста вы точно поймете, стоит ли доверять инструменту тестирования.
Советуем почитать —
A/B тестирование. Запуск и ошибки
Да, нужно больше времени, чтобы достичь статистической значимости. Зато вы оцениваете софт, а если он подтвердит свою надежность, то и поведение посетителей.Триангуляция данных
Конкретнее мы говорим про использование нескольких исследовательских методов, как способ получения более достоверных данных, чем при использовании одного инструмента.
Проще говоря, маркетолог в ходе сплит-теста должен располагать по меньшей мере 2 пакетами инструментов метрики и анализа.
Это позволит иметь 2 выборки данных для сверки результатов, полученных от разных источников, между собой. Если вы заметите резкую диспропорцию, то сможете устранить ее источник перед началом собственно сплит-теста. К тому же наличие 2 пакетов инструментов метрики упрощает оперативную проверку данных, получаемых в ходе сплит-теста.
Так делать А/А или нет?
Имейте в виду, что проведение А/А теста требует немалых затрат времени и бюджета. Это действие занимает время, которое, как правило, используется для полноценного сплит-теста. Если у вас большой трафик, вы можете применить А/А тесты, но при малых объемах можно отказаться от данного тестирования. Также, когда вы проводите A/A-тестирование, то сравниваете конверсионную производительность двух идентичных целевых страниц. Размер выборки и количество данных, которые потребуются для того, чтобы убедиться в отсутствии значимого искажения результатов, будут огромными по сравнению с A/B-тестом.
Поэтому проводить сплит-тесты с очень похожими целевыми страницами, для обнаружения предельно мелких преимуществ одного варианта над другим, можеть быть не совсем целесообразно. Вы можете проводить A/A тест на несколько недель дольше, чем непосредственно сам A/B тест, и не получить никакой ценной информации. Но если нужно проверить сам софт для тестирования и бюджет позволяет, то перед запуском сплит-теста разумнее будет начать с А/А.
Такие дела, котаны. Теперь вы знаете о тестировании немного больше. Всем конверта!